
www.manaraa.com

Software Development Activities Catalogue
Proposal

Danilo Martínez a,b , Xavier Ferre a

a. Universidad Politécnica de Madrid, Spain

b. Universidad de las Fuerzas Armadas ESPE, Ecuador

1 Introduction
Software development process is defined by [1] as “the process by which user needs are translated into a

software product. The process involves translating user needs into software requirements, transforming the

software requirements into design, implementing the design in code, testing the code, and sometimes,

installing and checking out the software for operational use”. The activities that a software process is

composed of can vary according to the specific characteristics of the project and field of application.

There is not agreed upon software development process for mobile applications, with the project leader

deciding upon his/her own criteria and experience.

We have created an integrated app development framework that includes a catalogue of candidate activities

to be used for mobile app development.

2 Background
Mobile app development shares some similarities with traditional desktop software development.

Nevertheless, the particularities of the mobile domain affect the software process and its activities. In order

to structure our activity catalogue proposal, we have based on the results of two studies: First, we carried

out a Systematic Mapping Study (SMS) on mobile software development process1, and, second, we carried

out a survey to 13 mobile developers [2]. Fig. 1 shows the activity map resulting from the SMS.

Fig. 1. Activity map resulting from the Systematic Mapping Study

In a similar manner, the activity map from the second study, the survey, is shown Fig. 2.

1 http://www.grise.upm.es/sites/extras/20/pdf/SMSMobileSoftwareProcess.pdf

www.manaraa.com

Fig. 2 Activity map resulting from the survey to mobile developers

3 Software Development Activities Catalogue
3.1 First Version
Having the two activity maps we proceeded to match them to obtain a fusion of the two. For this purpose,

we compared each one of the activities, sub-activities, and techniques so as to avoid duplicities. The

resulting combined map is shown in Fig. 3.

Fig. 3 Combined activity map – first version

Activities have been structured into six categories: Requirements, design, construction, testing, software

configuration management, and maintenance. Please note that we are talking about activity types, not about

process stages, since the latter would imply a waterfall life cycle approach, which is not the case. Mobile

development project leaders will have the flexibility to choose the activities to be carried out in the moment

they are needed, not necessarily in a sequential manner. Given that there is an important number of

techniques from the Human-Computer Interaction (HCI) field, related to usability and User eXperience

(UX), they have been highlighted in bold face in the figures. Usability and UX are acquire an special

relevance in mobile applications due to the high expectations to this regards from mobile users, and to the

fierce competition in the mobile app market.

This first version of the activity catalog is composed of 12 development activities and 39 techniques.

3.1.1 Evaluation
In order to evaluate this first version of the activity catalog we carried out two evaluation activities. In the

first evaluation activity bachelor students from the Universidad de las Fuerzas Armadas (ESPE), in its

campus in Sangolquí (Ecuador) used to catalog to choose techniques for the development of a mobile

application in the summer of 2017. The second evaluation of the catalogue was carried out by 2 expert

developers with an average of 3 years of experience in the development of mobile applications.

www.manaraa.com

The results of these two evaluation efforts were as follows:

• The set of activities, sub-activities and techniques, as it is detailed in the catalogue conveys the

idea of a list of prescriptive activities, that even may suggest a waterfall life cycle approach. This

is not the aim of the catalogue, as it is offered as a guide with a set of activities and techniques

from where the project leader can choose from.

• There is a set of activities and techniques which have received more interest from the bachelor

students, suggesting that they could be of interest for novel developers. On the other hand, there

is a high number of techniques not considered by any team. As a result of the expert evaluation

we have identified that the activity catalog is too extensive. Reducing the number of proposed

techniques, having thus a more compact catalogue would facilitate its comprehension, application

and management. Agile approaches, very common in mobile development, favor simple solutions

to complex ones.

3.2 Catalog Refinement: Second version
Considering the results of the evaluation in the previous section, we have defined the following criteria for

keeping activities in the catalogue:

1. Techniques that have special relevance in the mobile field.

2. Techniques that appear at least twice in the SMS or once in the survey.

3. Techniques selected have been selected both by the case study with bachelor students and in the

expert evaluation.

Techniques that do not comply with 1. and either 2. or 3. have been discarded, because they are considered

as having low relevance. The results of this process are detailed in Table 1 to Table 6, where discarded

techniques appear with grey background.
Table 1. Requirements Activities Refinement

Activity Task/Technique Literature Survey Evaluation Relevant

in mobile

Elicitation

User Stories [3], [4], [5] X X

Facilitated meeting [6], [7], [8],

[9]
[2] X

Interview [7], [10] X

Prototype [11] X

Competitor Analysis [12], [11] X

Survey [13], [14] X X

Scenarios [9] X

Observation [7], [8]

Analysis

Requirements Classification [15] X X

Architectural design and requirements

allocation

[4] X

Specification Requirements Classification [15]

Validation

Prototyping [3] [2] X

Acceptance Test [4]

Storyboarding [9]

www.manaraa.com

Table 2 Design Activities Refinement

Activity Task/Technique SMS Survey Evaluation Relevant in

mobile

Software structure

and architecture

Architectural Design [15], [14],[4] X X

Design Patterns [8], [10],[11] X

Architectural Styles [2]

User interface

design

User interface design [15], [6], [4],

[5]
[2] X X

Software design

notation

Structural description [3], [4]

Behavioral description [4]

Software design

strategies and

methods

Object Oriented Design [15]

Table 3 Construction Activities Refinement

Activity
Task/Technique SMS Survey Evaluation Relevant in

mobile

Construction

practical

consideration

Construction Testing [2] X

Coding [3], [4], [9]

Integration [2]

Construction

technology

API design and use [15] X X

Parameterization and Generics [12]

Table 4 Testing Activities Refinement

Activity
Task/Technique SMS Survey Evaluation Relevant in

mobile

Usage based

techniques

Thinking aloud [3] , [12], [16],

[9]
 X

Usability test [3], [4], [9],

[11]
[2] X X

Field Observation [3], [13] X

Interview [3],

[13],[7],[16],

[11]

 X

Satisfaction questionnaire [3], [16],[14]
[9]

 X

Heuristic evaluation [3], [7],

[10],[11]
 X

Test Technique Fault Based technique

Table 5 Software Management Configuration Activities Refinement

Activity
Task/Technique SMS Survey Evaluation Relevant in

mobile

Software Release

Management and

Delivery

Software Release Management [2] X

www.manaraa.com

Table 6 Maintenance Activities Refinement

Activity
Task/Technique SMS Survey Evaluation Relevant in

mobile

Categories of

Maintenance

Corrective Maintenance [2]
Perfective Maintenance [2]

3.3 Relevance of techniques for the mobile context
For each candidate technique in the first version of the activity catalogue we have considered the relevance

for the mobile field. For this purpose, we have analyzed each technique aim, and the way it has been applied

by authors of the studies in the SMS, and by developers in our preliminary studies. We have considered the

way that the application of every technique contributes to development of a mobile app. With this exercise

we have been also able to identify techniques that are difficult to particularize for the mobile context, and

therefore we have discarded them in our catalogue.

For every activity type we have analyzed the techniques to be applied, for each one we include a brief

description, if it has been included or discarded. We also include how they are particularized for the mobile

context for the former, and reason for rejection for the latter.

3.3.1 Requirements: Elicitation
3.3.1.1 User Stories

• Description: This technique is commonly used in adaptive methods and refers to short, high level

descriptions of required functionality expressed in customer terms.

• Decision: Accept.

• Particularization: The contexts of use are very important in the use of mobile applications, and

the User Stories help to locate the requirements in these contexts of use.

3.3.1.2 Facilitated meeting
• Description: The purpose of these meetings is to try to achieve a summative effect, whereby a

group of people can bring more insight into their software requirements than by working

individually

• Decision: Accept.

• Particularization: Mobile applications development has certain peculiarities (variety of devices,

no continuity of Internet connection, etc.) that the parties involved are not always aware of. The

Facilitated Meetings allow to expose these particularities and to be shared by all the stakeholders.

3.3.1.3 Interview
• Description: Interviewing stakeholders is a “traditional” means of eliciting requirements. It is

important to understand the advantages and limitations of interviews and how they should be

conducted.

• Decision: Accept.

• Particularization: The interviews can be a great help to inquire about what users know about the

mobile context and to use it in the development of the new app.

3.3.1.4 Prototype

www.manaraa.com

• Description: This technique is a valuable tool for clarifying ambiguous requirements. Low fidelity

prototypes are often preferred to avoid stakeholder “anchoring” on minor, incidental

characteristics of a higher quality prototype that can limit design flexibility in unintended ways.

• Decision: Accept.

• Particularization: Low-fidelity prototypes of the apps can be created to elicit the requirements

since they present a clear idea of how the interaction between the application's screens and the

elements of each screen will be performed. There are applications of mobile prototyping in the

market, this demand indicates that it is an interesting technique.

3.3.1.5 Competitor Analysis
• Description: Competitor analysis is a technique in which you can take an existing product, and

that is, possibly the competence of our application, to perform tests to know the functionalities of

the application and interaction techniques.

• Decision: Accept.

• Particularization: There are many mobile applications available in virtual stores, the same ones

that can be downloaded and analyzed. In addition, in the virtual stores, you can obtain additional

information about the users' ratings, as well as their comments.

3.3.1.6 Storyboarding
• Description: The Storyboards visually present a story scene by scene including the notes of what

is happening in each scene.

• Decision: Accept.

• Particularization: In the mobile field, a storyboard can represent a user's experience in a visual

and ordered way when using a mobile application.

3.3.1.7 Survey
• Description: Surveys can be a useful tool to obtain specific information when it is not possible to

carry out an interview or any other technique that implies a direct relationship with the interested

parties.

• Decision: Accept.

• Particularization: Surveys are very useful in the mobile field, considering that, in general, we do

not have a set of defined users. Therefore, it is difficult to make direct contact with a representative

group of potential users. Online surveys through the Internet are a good option to obtain

information about the features of the new application.

3.3.1.8 Scenarios
• Description: Scenarios provide a valuable means for providing context to the elicitation of user

requirements. They allow the software engineer to provide a framework for questions about user

tasks by permitting “what if” and “how is this done” questions to be asked. The most common

type of scenario is the use case description.

• Decision: Accept.

• Particularization: We can create scenarios that describe the mobile contexts in which users use

apps, in order to identify the requirements that are linked to the mobile context.

3.3.1.9 Observation

www.manaraa.com

• Description: The importance of software context within the organizational environment has led

to the adaptation of observational techniques such as ethnography for requirements elicitation.

• Decision: Reject.

• Justification: Observation methods are very difficult to carry out, since the usage of mobile apps

can be intermittent, maybe with a few minutes dedicated to the app every few hours.

3.3.2 Requirements: Analysis
3.3.2.1 Requirements Classification

• Description: Requirements can be classified on a number of dimensions like whether the

requirement is functional or nonfunctional, whether the requirement is derived from one or more

high-level requirements, according to by requirement priority or according to the scope of the

requirement.

• Decision: Accept.

• Particularization: In the specific case of mobile applications, a dimension can be considered that

contemplates the requirements that are directly linked to the mobile domain.

3.3.2.2 Architectural design and requirements allocation
• Description: Architectural design is the point at which the requirements process overlaps with

software. Despite being a complex task, it is possible to obtain as a result a global structure of the

system with its main components, its relationships and how they are distributed.

• Decision: Accept.

• Particularization: We can include the mechanisms through which mobile elements are included

in the architecture of the application, e.g. the way in which interaction with other applications is

going to be achieved.

3.3.3 Requirements: Specification
3.3.3.1 System Definition

• Description: System definition aims to create a basic document, just showing a high-level

description of requirements, since in agile approaches documentation creation is not a priority.

• Decision: Reject.

• Justification: System definition is a task that cannot be particularized to the mobile field since

the task as such is not far from a traditional system definition.

3.3.3.2 Requirements Specification
• Description: This document (sometimes known as the user requirements document or concept of

operations document) records the system requirements. It defines the high-level system

requirements from the domain perspective

• Decision: Reject.

• Justification: The writing of the requirements is a task that cannot be considered as particular of

the mobile field but is a standard task regardless of the scope of the application.

3.3.4 Requirements: Validation
3.3.4.1 Acceptance Test

• Description: An essential property of a software requirement is that it should be possible to

validate that the finished product satisfies it. Requirements that cannot be validated are really just

www.manaraa.com

“wishes.” In most cases, designing acceptance tests does this for how end-users typically conduct

business using the system.

• Decision: Reject.

• Justification: They are not particular to the mobile domain.

3.3.4.2 Prototyping
• Description: Prototyping is commonly a means for validating the software engineer’s

interpretation of the software requirements, as well as for eliciting new requirements. The

advantage of prototypes is that they can make it easier to interpret the software engineer’s

assumptions and, where needed, give useful feedback on why they are wrong.

• Decision: Accept.

• Particularization: The prototypes can be of great help to validate the requirements elicited,

especially those that are directly related to the mobile field, also allow us to assess their

understanding by users.

3.3.5 Design: Software structure and architecture
3.3.5.1 Architectural Design Implications

• Description: The software architecture provides a high-level abstract description of the structure,

behavior and main properties of the system. This abstraction involves the description of the

elements with which the system is built and the interaction between them including the mobile

ilities.

• Decision: Accept.

• Particularization: Make explicit in the architecture of the application the mobile ilities that are

going to be implemented.

3.3.5.2 Design Patterns
• Description: A Design Pattern is a common solution to a common problem in a given context.

• Decision: Accept.

• Particularization: In the mobile applications field, there are several types of patterns such as

those presented by Nilsson [17] or Neil [18].

3.3.5.3 Architectural Styles
• Description: An architectural style is a specialization of element and relation types, together with

a set of constraints on how they can be used. An architectural style can thus be seen as providing

the software’s high-level organization. There are various architectural styles of general purpose

like client-server, three-tiers, model-view-controller.

• Decision: Reject.

• Justification: The architectural styles used in mobile applications that have been identified in our

studies are the same as those used in desktop or web applications, e.g., the Model-View-Controller.

3.3.6 Design: User interface design
3.3.6.1 User interface design

• Description: The interface design process defines how a system interacts with external entities.

The design of the user interface defines the way in which users interact with the system and the

nature of the inputs and outputs that the system needs. The process to perform the design of the

www.manaraa.com

user interface is iterative, prototypes are often used to represent the characteristics, organization

and visual form of the software interface.

• Decision: Accept.

• Particularization: The process of designing the user interface in the mobile field is one of the

important points since it defines the way in which the user interacts with the mobile application.

We must pay special attention to the wide variety of devices that exist in the market, each of them

has its own characteristics that affect both the performance of the application and how to interact

with the user.

3.3.7 Design: Software design notation
3.3.7.1 Structural description

• Description: Notations that describe and represent the structural aspects of software design, they

are used to describe the major components and how they are interconnected.

• Decision: Reject.

• Justification: The description of the components through the proposed schemes are at a level of

a standard application, making it difficult to make a particularization to the mobile domain.

3.3.7.2 Behavioral description
• Description: Notations and languages, some graphical and some textual, that are used to describe

the dynamic behavior of software systems and components.

• Decision: Reject.

• Justification: In the same way to the previous case, the description of the behaviour of the

components through the notations and languages are at a level of a standard application, so it is

difficult to make a particularization to the mobile domain.

3.3.8 Design: Strategies and Methods
3.3.8.1 Object Oriented Design

• Description: Object Oriented Design is a software design paradigm where data and operations are

encapsulated in entities called objects.

• Decision: Reject.

• Justification: It is not a method at the same level as the other methods in this list, it is more a

software design approach.

3.3.9 Construction: Construction practical consideration.
3.3.9.1 Coding

• Description: Developers write the necessary code to create an app. The considerations to apply in

the software construction coding activity are: Techniques for creating understandable source code,

use of classes, use of control structures, handling of error conditions, Prevention of code-level

security breaches, source code organization, code documentation and code tuning.

• Decision: Reject.

• Justification: The writing of the code as it is presented in our studies does not differ from the way

of writing the code of a web or desktop application.

3.3.9.2 Integration

www.manaraa.com

• Description: The purpose of construction testing is to reduce the gap between the time when faults

are inserted into the code and the time when those faults are detected, thereby reducing the cost

incurred to fix them. Construction involves two forms of testing, which are often performed by

the software engineer who wrote the code: Unit testing and Integration testing.

• Decision: Reject.

• Justification: The integration of the code in a single application is complex to particularize.

However, there are authors who consider this activity as part of their proposals, but nothing

explicit is identified from the mobile field.

3.3.9.3 Construction Testing
• Description: The purpose of construction testing is to reduce the gap between the time when faults

are inserted into the code and the time when those faults are detected, thereby reducing the cost

incurred to fix them. Construction involves two forms of testing, which are often performed by

the software engineer who wrote the code: Unit testing and Integration testing.

• Decision: Accept.

• Particularization: Muccini et al. [19] consider that for unit tests we can use automatic tools like

JUnit in the case of Android, while iOS provides guidelines on how to perform unit tests for mobile

applications.

3.3.10 Construction: Technology.
3.3.10.1 API design and use

• Description: An application programming interface (API) is the set of signatures that are exported

and available to the users of a library or a framework to write their applications.

• Decision: Accept.

• Particularization: In the mobile field, the APIs are widely used because through them the

interaction of the application that is being developed with other applications resident in the same

device and with external services is achieved.

3.3.11 Testing: Usage based techniques.
3.3.11.1 Usability Test

• Description: The usability test with real users is one of the most common techniques when it

comes to testing an application, it provides direct information on how users use the application

and what their exact problems are with the specific interface being tested.

• Decision: Accept.

• Particularization: Although this technique has been widely accepted in traditional development,

it should be noted that in the mobile field there must be several aspects such as the place where

the test will be carried out, the devices and the platforms to be used. In addition, we must consider

the parameters to measure the relationships with mobile ilities. The data of tasks performed by

participants in a mobile device is recorded to be analyzed, a diagnosis of real problems and

recommendations to solve such problems is made.

3.3.11.2 Thinking aloud

www.manaraa.com

• Description: In thinking aloud protocol, participants are asked to talking while they are doing

their task. By verbalizing their thoughts, users allow us to understand how they see the application,

and this facilitates the identification of the main problems of users.

• Decision: Accept.

• Particularization: In the mobile field, this technique can be applied to know the user's impression

when performing a task and allows us to know the perception that the user has of the mobile

application and what are the difficulties that are linked to the mobile domain.

3.3.11.3 Field Observation
• Description: During the evaluation, the observation is performed with the user doing a task, but

with the prototype or the application to identify possible usability problems.

• Decision: Reject.

• Justification: It is very complicated and expensive to do if the mobile application is used

internally.

3.3.11.4 Survey
• Description: Surveys like evaluation tools are used to obtain specific information about the usage

of systems.

• Decision: Accept.

• Particularization: Surveys are can be useful in the mobile field, to know what the perception of

the performance and usage of our app in a group of users is. Online surveys through the Internet

are a good option to obtain this information

3.3.11.5 Satisfaction Questionnaire
• Description: The questionnaires allow knowing a subjective impression of the participants in a

usability test.

• Decision: Accept.

• Particularization: This technique allows knowing the impression of users when using the

developed mobile application.

3.3.11.6 Heuristic Evaluation
• Description: Heuristic evaluation is a method for structuring the critique of a system using a set

of relatively simple and general heuristics. Heuristic evaluation involves having a small set of

evaluators examine the interface and judge its compliance with recognized usability principles.

• Decision: Accept.

• Particularization: The set of heuristics that are often used are those proposed by Nielsen et al.

[20]. However, in the mobile context, not all heuristics are applicable, this is how Bertini et al.

[21] propose a list of heuristics that can be applied to mobile devices. Nor does it rule out the

existence of new heuristics that can be applied to the mobile context.

3.3.12 Software Configuration Management: Software Release
Management and Delivery.

3.3.12.1 Software Release Management

www.manaraa.com

• Description: Software release management encompasses the identification, packaging, and

delivery of the elements of a product. For example, an executable program, documentation, release

notes, and configuration data.

• Decision: Accept.

• Particularization: All the required elements must be prepared to launch the application to the

virtual store of each platform. Each platform has its own particular requirements to accept an

application or an update. This task is alienated to the continuous delivery approach (Continuous

Delivery) that is applied by the development teams to produce software in short periods of time

ensuring that the software update is available at any time.

3.3.13 Maintenance
3.3.13.1 Corrective Maintenance

• Description: Corrective maintenance is a reactive modification (or repairs) of a software product

performed after delivery to correct discovered problems. Included in this category is emergency

maintenance, which is an unscheduled modification performed to temporarily keep a software

product operational pending corrective maintenance.

• Decision: Reject.

• Justification: The repair of the application is not a process that presents any particular task that is

different from those performed in software engineering.

3.3.13.2 Perfective Maintenance
• Description: Perfective maintenance is a modification of a software product after delivery to

provide enhancements for users, improvement of program documentation, and recoding to

improve software performance, maintainability, or other software attributes.

• Decision: Reject.

• Justification: Modifying the application like the previous point is not a process that presents any

particular task that is different from the one performed in software engineering.

4 Conclusions
A proposal for a catalogue of development activities for the app has been prepared, taking as a starting

point the information obtained from empirical studies on the development of apps. The resulting catalogue

contains both development activities and a set of tasks/techniques that can be applied in the development

of apps, without being prescriptive, we consider it a contribution for developers in an area that is constantly

growing and where there is a lack of information about process issues.

5 References
[1] IEEE, 610.12-1990 IEEE Standard Glossary of Software Engineering Terminology., IEEE, 1990.

doi:10.1109/IEEESTD.1990.101064.

[2] L. Chandi, C. Silva, D. Martínez, T. Gualotuña, Mobile application development process: A

practical experience, in: Á. Rocha, B. Alturas, C. Costa, L.P. Reis, Manuel Pérez Cota (Eds.), 2017

12th Iber. Conf. Inf. Syst. Technol., Information Systems and Technologies (CISTI), 2017 12th

www.manaraa.com

Iberian Conference on, Lisboa, 2017: pp. 2113–2118. doi:10.23919/CISTI.2017.7975825.

[3] B. Losada, M. Urretavizcaya, J.-M. López, I. Fernández-Castro, Applying usability engineering in

InterMod agile development methodology. A case study in a mobile application, J. Univers.

Comput. Sci. 19 (2013) 1046–1065. http://www.scopus.com/inward/record.url?eid=2-s2.0-

84882957947&partnerID=40&md5=a3c7ac82f5c94448a986b0993dcff202.

[4] A. Hameed, A. Oudah, Improved methodology for mobile commerce applications, Int. J. Softw.

Eng. Its Appl. 8 (2014) 29–42. doi:10.14257/ijseia.2014.8.8,04.

[5] C. Scharff, R. Verma, Scrum to support mobile application development projects in a just-in-time

learning context, in: Proc. 2010 ICSE Work. Coop. Hum. Asp. Softw. Eng. - CHASE ’10, ACM

Press, New York, New York, USA, 2010: pp. 25–31. doi:10.1145/1833310.1833315.

[6] C.E. de A. Freire, M. Painho, Development of a Mobile Mapping Solution for Spatial Data

Collection Using Open-Source Technologies, Procedia Technol. 16 (2014) 481–490.

doi:10.1016/j.protcy.2014.10.115.

[7] T. Siu, V. Herskovic, Mobile augmented reality and context-awareness for firefighters, IEEE Lat.

Am. Trans. 12 (2014) 42–47. doi:10.1109/TLA.2014.6716491.

[8] V. Vylegzhanina, D.C. Schmidt, P. Hull, J.S. Emerson, Q. M.E., S. Mulvaney, Helping children

eat well via mobile software technologies, 2nd Int. Work. Mob. Dev. Lifecycle, MobileDeLi 2014.

(2014) 9–16. doi:10.1145/2688412.2688413.

[9] F. Ferreira, N. Almeida, A.F. Rosa, A. Oliveira, J. Casimiro, S. Silva, A. Teixeira, Elderly Centered

Design for Interaction – The Case of the S4S Medication Assistant, Procedia Comput. Sci. 27

(2014) 398–408. doi:10.1016/j.procs.2014.02.044.

[10] W. Woods, E. Scanlon, iSpot Mobile - A Natural History Participatory Science Application

Conference Item Application, (2012).

[11] E. Villalba, D. Salvi, M. Ottaviano, I. Peinado, M.T. Arredondo, A. Akay, Wearable and Mobile

System to Manage Remotely Heart Failure, Circulation. 13 (2009) 1386–1397.

doi:10.1161/CIRCULATIONAHA.108.802918.

[12] P. Mata, A. Chamney, G. Viner, D. Archibald, L. Peyton, A development framework for mobile

healthcare monitoring apps, Pers. Ubiquitous Comput. 19 (2015) 623–633. doi:10.1007/s00779-

015-0849-9.

[13] R. Skiada, E. Soroniati, A. Gardeli, D. Zissis, EasyLexia: A Mobile Application for Children with

Learning Difficulties, Procedia Comput. Sci. 27 (2014) 218–228. doi:10.1016/j.procs.2014.02.025.

[14] A. Kinai, R.E. Bryant, A. Walcott-Bryant, E. Mibuari, K. Weldemariam, O. Stewart, Twende-

twende: a mobile application for traffic congestion awareness and routing, in: Proc. 1st Int. Conf.

Mob. Softw. Eng. Syst. - MOBILESoft 2014, ACM Press, New York, New York, USA, 2014: pp.

93–98. doi:10.1145/2593902.2593926.

[15] M. Antic, Development of eStudent iOS mobile application, IJIM. 7 (2013) 35–40.

[16] B. Peischl, M. Ferk, A. Holzinger, The fine art of user-centered software development, Softw. Qual.

J. 23 (2015) 509–536. doi:10.1007/s11219-014-9239-1.

[17] E.G. Nilsson, Design patterns for user interface for mobile applications, Adv. Eng. Softw. 40 (2009)

1318–1328. doi:10.1016/j.advengsoft.2009.01.017.

www.manaraa.com

[18] T. Neil, J. Tidwell, Mobile design pattern gallery : UI patterns for smartphone apps, n.d.

[19] H. Muccini, A. Di Francesco, P. Esposito, Software Testing of Mobile Applications: Challenges

and Future Research Directions, in: AST ’12 Proc. 7th Int. Work. Autom. Softw. Test, Zurich,

2012: pp. 29–35.

https://s3.amazonaws.com/academia.edu.documents/43597250/AST2012_TestingMobileApps_2.

pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1529486284&Signature=UzJ

4ol0if1aWTEIuQrUYs7Fx2TA%3D&response-content-disposition=inline%3B

filename%3DSoftware_Testing_of_ (accessed June 20, 2018).

[20] J. Nielsen, R. Molich, Heuristic Evaluation of user interfaces, CHI ’90 Proc. SIGCHI Conf. Hum.

Factors Comput. Syst. (1990) 249–256. doi:10.1145/97243.97281.

[21] E. Bertini, S. Gabrielli, S. Kimani, Appropriating and assessing heuristics for mobile computing,

in: Proc. Work. Conf. Adv. Vis. Interfaces - AVI ’06, 2006: p. 119. doi:10.1145/1133265.1133291.

